We investigate experimentally fundamental properties of coherent ghost imaging using spatially incoherent beams generated from a pseudo-thermal source. A complementarity between the coherence of the beams and the correlation between them is demonstrated by showing a complementarity between ghost diffraction and ordinary diffraction patterns. In order for the ghost imaging scheme to work it is therefore crucial to have incoherent beams. The visibility of the information is shown for the ghost image to become better as the object size relative to the speckle size is decreased, and therefore a remarkable tradeoff between resolution and visibility exists. The experimental conclusions are backed up by both theory and numerical simulations
Ghost Imaging experiments with classical thermal light
Brambilla E.;Lugiato L. A.;Ferri F.;
2006-01-01
Abstract
We investigate experimentally fundamental properties of coherent ghost imaging using spatially incoherent beams generated from a pseudo-thermal source. A complementarity between the coherence of the beams and the correlation between them is demonstrated by showing a complementarity between ghost diffraction and ordinary diffraction patterns. In order for the ghost imaging scheme to work it is therefore crucial to have incoherent beams. The visibility of the information is shown for the ghost image to become better as the object size relative to the speckle size is decreased, and therefore a remarkable tradeoff between resolution and visibility exists. The experimental conclusions are backed up by both theory and numerical simulationsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.