Let K be a closed convex and bounded subset of a Banach space X. Suppose T:X ! X is a uniformly Lipschitzian mapping, i.e. kTnx−Tnyk kx−yk for all x, y 2 K and n = 1, 2, · · ·. We prove a fixed point result for a space having uniform normal structure. These are spaces for which N(X) = sup{r(C, coC): diamC = 1} < 1, where r(C, coC) denotes the Chebyshev radius of the set C with respect to its convex closure.

Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure.

CASINI, EMANUELE GIUSEPPE;
1985-01-01

Abstract

Let K be a closed convex and bounded subset of a Banach space X. Suppose T:X ! X is a uniformly Lipschitzian mapping, i.e. kTnx−Tnyk kx−yk for all x, y 2 K and n = 1, 2, · · ·. We prove a fixed point result for a space having uniform normal structure. These are spaces for which N(X) = sup{r(C, coC): diamC = 1} < 1, where r(C, coC) denotes the Chebyshev radius of the set C with respect to its convex closure.
1985
Casini, EMANUELE GIUSEPPE; Maluta, E.
File in questo prodotto:
File Dimensione Formato  
Fixed points of uniformly Lipschitzian mappings in spaces with uniformly.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1792365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 64
social impact