Hyers and Ulam proved a stability result for convex functions, defined in a subset of W . Here we give an example showing that their result cannot be extended to those functions defined in infinite-dimensional normed spaces. Also, we give a positive result for a particular class of approximately convex functions, defined in a Banach space, whose norm satisfies the so-called convex approximation property.

A counterexample to the infinity version of the Hyers and Ulam stability theorem.

CASINI, EMANUELE GIUSEPPE;
1993-01-01

Abstract

Hyers and Ulam proved a stability result for convex functions, defined in a subset of W . Here we give an example showing that their result cannot be extended to those functions defined in infinite-dimensional normed spaces. Also, we give a positive result for a particular class of approximately convex functions, defined in a Banach space, whose norm satisfies the so-called convex approximation property.
1993
Casini, EMANUELE GIUSEPPE; Papini, P. L.
File in questo prodotto:
File Dimensione Formato  
A counterexample to the infinity version of the Hyers and Ulam stability theorem..pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 508.05 kB
Formato Adobe PDF
508.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1792366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact