Several definitions of measures that aim at representing the size of software requirements are currently available. These measures have gained a quite relevant role, since they are one of the few types of objective measures upon which effort estimation can be based. However, traditional Functional Size Measures do not take into account the amount and complexity of elaboration required, concentrating instead on the amount of data accessed or moved. This is a problem since the amount and complexity of the required data elaboration affect the implementation effort, but are not adequately represented by the current size measures, including the standardized ones. Recently, a few approaches to measuring aspects of user requirements that are supposed to be related with functional complexity and/or data elaboration have been proposed by researchers. In this paper, we take into consideration some of these proposed measures and compare them with respect to their ability to predict the development effort, especially when used in combination with measures of functional size. A few methods for estimating software development effort –both based on model building and on analogy– are experimented with, using different types of functional size and elaboration complexity measures. All the most significant models obtained were based on a notion of computation density that is based on the number of computation flows in functional processes. When using estimation by analogy, considering functional complexity in the selection of analogue projects improved accuracy in all the evaluated cases. In conclusion, it appears that functional complexity is a factor that affects development effort; accordingly, whatever method is used for effort estimation, it is advisable to take functional complexity into due consideration.
Using Functional Complexity Measures in Software Development Effort Estimation
LAVAZZA, LUIGI ANTONIO;
2012-01-01
Abstract
Several definitions of measures that aim at representing the size of software requirements are currently available. These measures have gained a quite relevant role, since they are one of the few types of objective measures upon which effort estimation can be based. However, traditional Functional Size Measures do not take into account the amount and complexity of elaboration required, concentrating instead on the amount of data accessed or moved. This is a problem since the amount and complexity of the required data elaboration affect the implementation effort, but are not adequately represented by the current size measures, including the standardized ones. Recently, a few approaches to measuring aspects of user requirements that are supposed to be related with functional complexity and/or data elaboration have been proposed by researchers. In this paper, we take into consideration some of these proposed measures and compare them with respect to their ability to predict the development effort, especially when used in combination with measures of functional size. A few methods for estimating software development effort –both based on model building and on analogy– are experimented with, using different types of functional size and elaboration complexity measures. All the most significant models obtained were based on a notion of computation density that is based on the number of computation flows in functional processes. When using estimation by analogy, considering functional complexity in the selection of analogue projects improved accuracy in all the evaluated cases. In conclusion, it appears that functional complexity is a factor that affects development effort; accordingly, whatever method is used for effort estimation, it is advisable to take functional complexity into due consideration.File | Dimensione | Formato | |
---|---|---|---|
JAS2012_soft_v5_n34_2012_10.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
592.03 kB
Formato
Adobe PDF
|
592.03 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.