We characterized the mechanism and pharmacodynamics of five structurally distinct inhibitors of d-amino acid oxidase. All inhibitors bound the oxidized form of human enzyme with affinity slightly higher than that of benzoate (Kd ≈ 2-4 μM). Stopped-flow experiments showed that pyrrole-based inhibitors possessed high affinity (Kd ≈ 100-200 nM) and slow release kinetics (k < 0.01 s(-1)) in the presence of substrate, while inhibitors with pendent aromatic groups altered conformations of the active site lid, as evidenced by X-ray crystallography, and showed slower kinetics of association. Rigid bioisosteres of benzoic acid induced a closed-lid conformation, had slower release in the presence of substrate, and were more potent than benzoate. Steady-state d-serine concentrations were described in a PK/PD model, and competition for d-serine sites on NMDA receptors was demonstrated in vivo. DAAO inhibition increased the spatiotemporal influence of glial-derived d-serine, suggesting localized effects on neuronal circuits where DAAO can exert a neuromodulatory role.

Structural, Kinetic, and Pharmacodynamic Mechanisms of d-Amino Acid Oxidase Inhibition by Small Molecules.

POLLEGIONI, LOREDANO;PIUBELLI, LUCIANO;MOLLA, GIANLUCA;
2013-01-01

Abstract

We characterized the mechanism and pharmacodynamics of five structurally distinct inhibitors of d-amino acid oxidase. All inhibitors bound the oxidized form of human enzyme with affinity slightly higher than that of benzoate (Kd ≈ 2-4 μM). Stopped-flow experiments showed that pyrrole-based inhibitors possessed high affinity (Kd ≈ 100-200 nM) and slow release kinetics (k < 0.01 s(-1)) in the presence of substrate, while inhibitors with pendent aromatic groups altered conformations of the active site lid, as evidenced by X-ray crystallography, and showed slower kinetics of association. Rigid bioisosteres of benzoic acid induced a closed-lid conformation, had slower release in the presence of substrate, and were more potent than benzoate. Steady-state d-serine concentrations were described in a PK/PD model, and competition for d-serine sites on NMDA receptors was demonstrated in vivo. DAAO inhibition increased the spatiotemporal influence of glial-derived d-serine, suggesting localized effects on neuronal circuits where DAAO can exert a neuromodulatory role.
2013
http://dx.doi.org/10.1021/jm4002583
S. C., Hopkins; M. L. R., Heffernan; L. D., Saraswat; C. A., Bowen; L., Melnick; L. W., Hardy; M. A., Orsini; M. S., Allen; P., Koch; K. L., Spear; R. J., Foglesong; M., Soukri; M., Chytil; Q. K., Fang; S. W., Jones; M. A., Varney; A., Panatier; S. H. R., Oliet; Pollegioni, Loredano; Piubelli, Luciano; Molla, Gianluca; M., Nardini; T. H., Large
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1815516
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact