Several Smart Monte Carlo (SMC) and Hybrid Monte Carlo (HMC) simulations coupled with the Replica Exchange (RE) strategy are compared in multidimensional flat and curved manifolds characterized by extremely rugged potential energy surfaces, to quantify their convergence properties with respect to walk length and overall cost. We learn that the HMC coupled with a sampling enhancing method is much more efficient in manifolds mapped with unconventional coordinates than SMC. This is due to an inherent difficulty in conserving energy in curved spaces directly mapped, and the lack of such strict requirement for HMC.
Replica exchange with Smart Monte Carlo and Hybrid Monte Carlo in manifolds
MELLA, MASSIMO
2013-01-01
Abstract
Several Smart Monte Carlo (SMC) and Hybrid Monte Carlo (HMC) simulations coupled with the Replica Exchange (RE) strategy are compared in multidimensional flat and curved manifolds characterized by extremely rugged potential energy surfaces, to quantify their convergence properties with respect to walk length and overall cost. We learn that the HMC coupled with a sampling enhancing method is much more efficient in manifolds mapped with unconventional coordinates than SMC. This is due to an inherent difficulty in conserving energy in curved spaces directly mapped, and the lack of such strict requirement for HMC.File | Dimensione | Formato | |
---|---|---|---|
CPL_HMC_PIS_comparison.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
935.05 kB
Formato
Adobe PDF
|
935.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.