In this paper we solve the satisfiability problem for the quantifier-free fragment of set theory MLSSPF involving in addition to the basic Boolean set operators of union, intersection, and difference, also the powerset and singleton operators, and a finiteness predicate. The more restricted fragment obtained by dropping the finiteness predicate has been shown to have a solvable satisfiability problem in a previous paper, by establishing for it a small model property. We exploit the latter decision result for dealing also with the finiteness predicate (and therefore with the infiniteness predicate too) and prove a small witness-model property for MLSSPF, asserting that any model for a satisfiable formula Phi with m distinct variables of the fragment of our interest admits a finite representation bounded by c(m), where c is a suitable computable function. Since such candidate representations are finitely many, their number does not exceed a known bound, and it can be recognized algorithmically whether they indeed represent a(n infinite) model for the input formula, the decidability of the satisfiability problem for MLSSPF follows.

Formative processes with applications to the decision problem in set theory: II. Powerset and singleton operators, finiteness predicate

URSINO, PIETRO
2014-01-01

Abstract

In this paper we solve the satisfiability problem for the quantifier-free fragment of set theory MLSSPF involving in addition to the basic Boolean set operators of union, intersection, and difference, also the powerset and singleton operators, and a finiteness predicate. The more restricted fragment obtained by dropping the finiteness predicate has been shown to have a solvable satisfiability problem in a previous paper, by establishing for it a small model property. We exploit the latter decision result for dealing also with the finiteness predicate (and therefore with the infiniteness predicate too) and prove a small witness-model property for MLSSPF, asserting that any model for a satisfiable formula Phi with m distinct variables of the fragment of our interest admits a finite representation bounded by c(m), where c is a suitable computable function. Since such candidate representations are finitely many, their number does not exceed a known bound, and it can be recognized algorithmically whether they indeed represent a(n infinite) model for the input formula, the decidability of the satisfiability problem for MLSSPF follows.
2014
Decision problem; Satisfaction algorithm; Computable set theory
Cantone, D.; Ursino, Pietro
File in questo prodotto:
File Dimensione Formato  
CantoneUrsinoRevisedVersion.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 467.47 kB
Formato Adobe PDF
467.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1868920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 3
social impact