We theoretically investigate the terahertz (THz) dielectric response of a semiconductor slab hosting a tunable grating photogenerated by the interference of two tilted infrared (IR) plane waves. In the case where the grating period is much smaller than the THz wavelength, we numerically evaluate the ordinary and extraordinary component of the effective permittivity tensor by resorting to electromagnetic full-wave simulation coupled to the dynamics of charge carriers excited by IR radiation. We show that the photo-induced metamaterial optical response can be tailored by varying the grating and it ranges from birefringent to hyperbolic to anisotropic negative dielectric without resorting to microfabrication. (C) 2013 Optical Society of America
Terahertz optically tunable dielectric metamaterials without microfabrication
RIZZA, CARLO;COLUMBO, LORENZO LUIGI;PRATI, FRANCO
2013-01-01
Abstract
We theoretically investigate the terahertz (THz) dielectric response of a semiconductor slab hosting a tunable grating photogenerated by the interference of two tilted infrared (IR) plane waves. In the case where the grating period is much smaller than the THz wavelength, we numerically evaluate the ordinary and extraordinary component of the effective permittivity tensor by resorting to electromagnetic full-wave simulation coupled to the dynamics of charge carriers excited by IR radiation. We show that the photo-induced metamaterial optical response can be tailored by varying the grating and it ranges from birefringent to hyperbolic to anisotropic negative dielectric without resorting to microfabrication. (C) 2013 Optical Society of AmericaI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.