At the synapse, d-serine is an endogenous co-agonist for the N-methyl-d-aspartate receptor (NMDAR). It plays an important role in synaptic transmission and plasticity and has also been linked to several pathological diseases such as schizophrenia and Huntington's. The quantification of local changes in d-serine concentration is essential to further understanding these processes. We report herein the development of a disk-shaped amperometric enzymatic biosensor for detection of d-serine based on a 25 μm diameter platinum disk microelectrode with an electrodeposited poly-m-phenylenediamine (PPD) layer and an R. gracilis d-amino acid oxidase (RgDAAO) layer. The disk-shaped d-serine biosensor is 1-5 orders of magnitude smaller than previously reported probes and exhibits a sensitivity of 276 μA cm(-2) mM(-1) with an in vitro detection limit of 0.6 μM. We demonstrate its usefulness for in vivo applications by measuring the release of endogenous d-serine in the brain of Xenopus laevis tadpoles.
Disk-Shaped Amperometric Enzymatic Biosensor for in Vivo Detection of d-serine.
POLLEGIONI, LOREDANO;
2014-01-01
Abstract
At the synapse, d-serine is an endogenous co-agonist for the N-methyl-d-aspartate receptor (NMDAR). It plays an important role in synaptic transmission and plasticity and has also been linked to several pathological diseases such as schizophrenia and Huntington's. The quantification of local changes in d-serine concentration is essential to further understanding these processes. We report herein the development of a disk-shaped amperometric enzymatic biosensor for detection of d-serine based on a 25 μm diameter platinum disk microelectrode with an electrodeposited poly-m-phenylenediamine (PPD) layer and an R. gracilis d-amino acid oxidase (RgDAAO) layer. The disk-shaped d-serine biosensor is 1-5 orders of magnitude smaller than previously reported probes and exhibits a sensitivity of 276 μA cm(-2) mM(-1) with an in vitro detection limit of 0.6 μM. We demonstrate its usefulness for in vivo applications by measuring the release of endogenous d-serine in the brain of Xenopus laevis tadpoles.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.