First-principles modeling can be a powerful tool for the understanding and optimization of bottom-up processes for nanomaterials fabrication, such as chemical vapor deposition (CVD), a key technology for the development of advanced systems and devices. Molecule-to-material conversion by CVD involves complex chemical phenomena, which are often obscure and still largely unexplored. A proper modeling would require high level of accuracy, large sized models and should include both temperature effects and statistical sampling of reactive events. By presenting a few selected examples, this perspective surveys such problems and discusses currently available approaches for their solution. Possible strategies for future advances in the field are also highlighted.

Opening the Pandora's jar of molecule-to-material conversion in chemical vapor deposition: Insights from theory

TABACCHI, GLORIA
;
FOIS, ETTORE SILVESTRO;
2014-01-01

Abstract

First-principles modeling can be a powerful tool for the understanding and optimization of bottom-up processes for nanomaterials fabrication, such as chemical vapor deposition (CVD), a key technology for the development of advanced systems and devices. Molecule-to-material conversion by CVD involves complex chemical phenomena, which are often obscure and still largely unexplored. A proper modeling would require high level of accuracy, large sized models and should include both temperature effects and statistical sampling of reactive events. By presenting a few selected examples, this perspective surveys such problems and discusses currently available approaches for their solution. Possible strategies for future advances in the field are also highlighted.
2014
http://onlinelibrary.wiley.com/doi/10.1002/qua.24505/full
chemical vapor deposition; density functional calculations; high-temperature chemistry; molecular dynamics; reactivity; surface chemistry; transition metals; wavefunction methods
Tabacchi, Gloria; Fois, ETTORE SILVESTRO; Barreca, D.; Gasparotto, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1885720
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact