The purpose of this paper is to give a self-contained proof that a complete manifold with more than one end never supports an L q,p -Sobolev inequality (2 ≤ p, q ≤ p ∗ ), provided the negative part of its Ricci tensor is small (in a suitable spectral sense). In the route, we discuss potential theoretic properties of the ends of a manifold enjoying an L q,p -Sobolev inequality.

The connectivity at infinity of a manifold and Lq,p-Sobolev inequalities

PIGOLA, STEFANO;SETTI, ALBERTO GIULIO;
2014-01-01

Abstract

The purpose of this paper is to give a self-contained proof that a complete manifold with more than one end never supports an L q,p -Sobolev inequality (2 ≤ p, q ≤ p ∗ ), provided the negative part of its Ricci tensor is small (in a suitable spectral sense). In the route, we discuss potential theoretic properties of the ends of a manifold enjoying an L q,p -Sobolev inequality.
2014
http://www.sciencedirect.com/science/article/pii/S0723086913000820
Pigola, Stefano; Setti, ALBERTO GIULIO; Mark, Troyanov
File in questo prodotto:
File Dimensione Formato  
Expos2014-1.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 340.07 kB
Formato Adobe PDF
340.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1891320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact