A classical result by Alexander Grigor'yan states that on a stochastically complete manifold the non-negative superharmonic $L^1$-functions are necessarily constant. In this paper we construct explicit examples showing that, in the presence of an anisotropy of the space, the reverse implication does not hold. We also consider natural geometric situations where stochastically incomplete manifolds do not posses the above mentioned $L^1$-Liouville property for superharmonic functions.

On the L1-Liouville property of stochastically incomplete manifolds

PIGOLA, STEFANO;SETTI, ALBERTO GIULIO
2013-01-01

Abstract

A classical result by Alexander Grigor'yan states that on a stochastically complete manifold the non-negative superharmonic $L^1$-functions are necessarily constant. In this paper we construct explicit examples showing that, in the presence of an anisotropy of the space, the reverse implication does not hold. We also consider natural geometric situations where stochastically incomplete manifolds do not posses the above mentioned $L^1$-Liouville property for superharmonic functions.
2013
$L^1$-Liouville property; stochastic completeness; mean exit time
Pacelli Bessa, G.; Pigola, Stefano; Setti, ALBERTO GIULIO
File in questo prodotto:
File Dimensione Formato  
G. Pacelli Bessa, S. Pigola, A.G. Setti, On the L 1-Liouville Property of Stochastically Incomplete Manifolds, PoTa 39 (2013).pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 308.95 kB
Formato Adobe PDF
308.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1922320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact