We prove spectral, stochastic and mean curvature estimates for complete m-submanifolds ϕ : M → N of n-manifolds with a pole N in terms of the comparison isoperimetric ratio I_m and the extrinsic radius r_ϕ ≤ ∞. Our proof holds for the bounded case r_ϕ < ∞, recovering the known results, as well as for the unbounded case r ϕ = ∞. In both cases, the fundamental ingredient in these estimates is the integrability over (0,r ϕ ) of the inverse I^{−1}_m of the comparison isoperimetric radius. When r_ϕ = ∞, this condition is guaranteed if N is highly negatively curved.

On submanifolds of highly negatively curved spaces

PIGOLA, STEFANO;SETTI, ALBERTO GIULIO
2014-01-01

Abstract

We prove spectral, stochastic and mean curvature estimates for complete m-submanifolds ϕ : M → N of n-manifolds with a pole N in terms of the comparison isoperimetric ratio I_m and the extrinsic radius r_ϕ ≤ ∞. Our proof holds for the bounded case r_ϕ < ∞, recovering the known results, as well as for the unbounded case r ϕ = ∞. In both cases, the fundamental ingredient in these estimates is the integrability over (0,r ϕ ) of the inverse I^{−1}_m of the comparison isoperimetric radius. When r_ϕ = ∞, this condition is guaranteed if N is highly negatively curved.
2014
Isoperimetric ratio; Spectral and mean curvature estimates; Submanifolds
Pacelli Bessa, G.; Pigola, Stefano; Setti, ALBERTO GIULIO
File in questo prodotto:
File Dimensione Formato  
Bessa Pigola Setti, On submanifolds of highly negatively curved spaces, Int. J. Math. 25 (2014).pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 239.46 kB
Formato Adobe PDF
239.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1922520
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact