Abstract We study geometric properties of complete non-compact bounded self-shrinkers and obtain natural restrictions that force these hypersurfaces to be compact. Furthermore, we observe that, to a certain extent, complete self-shrinkers intersect transversally a hyperplane through the origin. When such an intersection is compact, we deduce spectral information on the natural drifted Laplacian associated to the self-shrinker. These results go in the direction of verifying the validity of a conjecture by H.D. Cao concerning the polynomial volume growth of complete self-shrinkers. A finite strong maximum principle in case the self-shrinker is confined into a cylindrical product is also presented.

Complete self-shrinkers confined into some regions of the space

PIGOLA, STEFANO;RIMOLDI, MICHELE
2014-01-01

Abstract

Abstract We study geometric properties of complete non-compact bounded self-shrinkers and obtain natural restrictions that force these hypersurfaces to be compact. Furthermore, we observe that, to a certain extent, complete self-shrinkers intersect transversally a hyperplane through the origin. When such an intersection is compact, we deduce spectral information on the natural drifted Laplacian associated to the self-shrinker. These results go in the direction of verifying the validity of a conjecture by H.D. Cao concerning the polynomial volume growth of complete self-shrinkers. A finite strong maximum principle in case the self-shrinker is confined into a cylindrical product is also presented.
2014
Pigola, Stefano; Rimoldi, Michele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1922720
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact