Background Glycosylation is increasingly recognized as one of the most relevant postranslational modifications. Sialic acids are negatively charged sugars which frequently terminate the carbohydrate chains of glycoproteins and glycolipids. The addition of sialic acids is mediated by sialyltransferases, a family of glycosyltransferases with a crucial role in cancer progression. Scope of the review To describe the phenotypic and clinical implications of altered expression of sialyltransferases and of their cognate sialylated structures in cancer. To propose a unifying model of the role of sialyltransferases and sialylated structures on cancer progression. Major conclusions We first discuss the biosynthesis and the role played by the major cancer-associated sialylated structures, including Thomsen-Friedenreich-associated antigens, sialyl Lewis antigens, α2,6-sialylated lactosamine, polysialic acid and gangliosides. Then, we show that altered sialyltransferase expression in cancer, consequence of genetic and epigenetic alterations, generates a flow of information toward the membrane through the biosynthesis of aberrantly sialylated molecules (inside-out signaling). In turn, the presence of aberrantly sialylated structures on cell membrane receptors generates a flow of information toward the nucleus, which can exacerbate the neoplastic phenotype (outside-in signaling). We provide examples of self-fueling loops generated by these flows of information. General significance Sialyltransferases have a wide impact on the biology of cancer and can be the target of innovative therapies. Our unified view provides a conceptual framework to understand the impact of altered glycosylation in cancer.

Sialosignaling: Sialyltransferases as engines of self-fueling loops in cancer progression

TRINCHERA, MARCO GIUSEPPE;
2014-01-01

Abstract

Background Glycosylation is increasingly recognized as one of the most relevant postranslational modifications. Sialic acids are negatively charged sugars which frequently terminate the carbohydrate chains of glycoproteins and glycolipids. The addition of sialic acids is mediated by sialyltransferases, a family of glycosyltransferases with a crucial role in cancer progression. Scope of the review To describe the phenotypic and clinical implications of altered expression of sialyltransferases and of their cognate sialylated structures in cancer. To propose a unifying model of the role of sialyltransferases and sialylated structures on cancer progression. Major conclusions We first discuss the biosynthesis and the role played by the major cancer-associated sialylated structures, including Thomsen-Friedenreich-associated antigens, sialyl Lewis antigens, α2,6-sialylated lactosamine, polysialic acid and gangliosides. Then, we show that altered sialyltransferase expression in cancer, consequence of genetic and epigenetic alterations, generates a flow of information toward the membrane through the biosynthesis of aberrantly sialylated molecules (inside-out signaling). In turn, the presence of aberrantly sialylated structures on cell membrane receptors generates a flow of information toward the nucleus, which can exacerbate the neoplastic phenotype (outside-in signaling). We provide examples of self-fueling loops generated by these flows of information. General significance Sialyltransferases have a wide impact on the biology of cancer and can be the target of innovative therapies. Our unified view provides a conceptual framework to understand the impact of altered glycosylation in cancer.
2014
Chemoresistance; Gangliosides; Glycosylation; Integrins; Neural cell adhesion molecule; Sialylation
Dall'Olio, F.; Malagolini, N.; Trinchera, MARCO GIUSEPPE; Chiricolo, M.
File in questo prodotto:
File Dimensione Formato  
BBA14 review sialosignaling.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 828.56 kB
Formato Adobe PDF
828.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1939521
Citazioni
  • ???jsp.display-item.citation.pmc??? 59
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 97
social impact