Mechanical-biological treatments (MBTs) of urban waste are growing in popularity in many European countries. Recent studies pointed out that their contribution in terms of volatile organic compounds (VOCs) and other air pollutants is not negligible. Compared to classical removal technologies, non-thermal plasmas (NTP) showed better performances and low energy consumption when applied to treat lowly concentrated streams. Therefore, to study the feasibility of the application of NTP to MBTs, a Dielectric Barrier Discharge reactor was applied to treat a mixture of air and methyl ethyl ketone (MEK), to simulate emissions from MBTs. The removal efficiency of MEK was linearly dependent upon time, power and specific input energy. Only 2-4% of MEK was converted to carbon dioxide (CO2), the remaining carbon being involved in the formation of byproducts (methyl nitrate and 2,3-butanedione, especially). For future development of pilot-scale reactors, acting on residence time, power, convective flow and catalysts will help finding a compromise between energy consumption, desired abatement and selectivity to CO2.
Effluents from MBT plants: plasma techniques for the treatment of VOCs
TORRETTA, VINCENZO;RADA, ELENA CRISTINA
2014-01-01
Abstract
Mechanical-biological treatments (MBTs) of urban waste are growing in popularity in many European countries. Recent studies pointed out that their contribution in terms of volatile organic compounds (VOCs) and other air pollutants is not negligible. Compared to classical removal technologies, non-thermal plasmas (NTP) showed better performances and low energy consumption when applied to treat lowly concentrated streams. Therefore, to study the feasibility of the application of NTP to MBTs, a Dielectric Barrier Discharge reactor was applied to treat a mixture of air and methyl ethyl ketone (MEK), to simulate emissions from MBTs. The removal efficiency of MEK was linearly dependent upon time, power and specific input energy. Only 2-4% of MEK was converted to carbon dioxide (CO2), the remaining carbon being involved in the formation of byproducts (methyl nitrate and 2,3-butanedione, especially). For future development of pilot-scale reactors, acting on residence time, power, convective flow and catalysts will help finding a compromise between energy consumption, desired abatement and selectivity to CO2.File | Dimensione | Formato | |
---|---|---|---|
61-WM-Plasma1-Torretta.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.