Hyaluronan (HA) is a critical component of cancer microenvironment that is known to increase tumor progression and aggressiveness. The synthesis of HA starts from the cytosolic precursors UDP N-acetylglucosamine and UDP-glucuronic acid. These two sugar nucleotides have several functions in addition to glycoconjugate synthesis and glucuronidation reactions, each of which can have a critical role in cancer. HA is synthesized by a family of three HA synthase (HAS) enzymes and, in this review, we described the main posttranslational modifications that are known to regulate HA metabolism. In particular, as the main HAS in adult tissues is HAS2, we focused on the role of AMPK-mediated phosphorylation and glycosylation by O-linked N-acetylglucosamine (O-GlcNAcylation) of HAS2 which mediate HAS2 inactivation and activation, respectively. HA catabolism, furnishing glucuronic acid and N-acetylglucosamine, can represent for a cancer cell a valid source of substrates to sustain complex tumor metabolism, and we highlight a presumable metabolic fate of such sugars in tumor cells.
Hyaluronan synthases posttranslational regulation in cancer
VIGETTI, DAVIDE;PASSI, ALBERTO
2014-01-01
Abstract
Hyaluronan (HA) is a critical component of cancer microenvironment that is known to increase tumor progression and aggressiveness. The synthesis of HA starts from the cytosolic precursors UDP N-acetylglucosamine and UDP-glucuronic acid. These two sugar nucleotides have several functions in addition to glycoconjugate synthesis and glucuronidation reactions, each of which can have a critical role in cancer. HA is synthesized by a family of three HA synthase (HAS) enzymes and, in this review, we described the main posttranslational modifications that are known to regulate HA metabolism. In particular, as the main HAS in adult tissues is HAS2, we focused on the role of AMPK-mediated phosphorylation and glycosylation by O-linked N-acetylglucosamine (O-GlcNAcylation) of HAS2 which mediate HAS2 inactivation and activation, respectively. HA catabolism, furnishing glucuronic acid and N-acetylglucosamine, can represent for a cancer cell a valid source of substrates to sustain complex tumor metabolism, and we highlight a presumable metabolic fate of such sugars in tumor cells.File | Dimensione | Formato | |
---|---|---|---|
Advances Cancer Research2014.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
558.26 kB
Formato
Adobe PDF
|
558.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.