This work focuses the attention on the automatic segmentation of meningioma from multispectral brain Magnetic Resonance imagery. The Authors address the segmentation task by proposing a fully automatic method hierarchically structured in two phases. The preliminary unsupervised phase is based on Graph Cut framework. In the second phase, preliminary segmentation results are refined using a supervised classification based on Support Vector Machine. The overall segmentation procedure is conceived fully automatic and tailored to non-volumetric data characterized by poor inter-slice spacing, in an attempt to facilitate the insertion in clinical practice. The results obtained in this preliminary study are encouraging and prove that the segmentation benefits from the allied use of Graph Cut and Support Vector Machine frameworks.
Automatic Segmentation of MR Brain Tumor Images using Support Vector Machine in Combination with Graph Cut
BINAGHI, ELISABETTA;PEDOIA, VALENTINA;BALBI, SERGIO;LATTANZI, DESIREE DORA ANTONELLA;
2014-01-01
Abstract
This work focuses the attention on the automatic segmentation of meningioma from multispectral brain Magnetic Resonance imagery. The Authors address the segmentation task by proposing a fully automatic method hierarchically structured in two phases. The preliminary unsupervised phase is based on Graph Cut framework. In the second phase, preliminary segmentation results are refined using a supervised classification based on Support Vector Machine. The overall segmentation procedure is conceived fully automatic and tailored to non-volumetric data characterized by poor inter-slice spacing, in an attempt to facilitate the insertion in clinical practice. The results obtained in this preliminary study are encouraging and prove that the segmentation benefits from the allied use of Graph Cut and Support Vector Machine frameworks.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.