The solution of complex rarefied flows with the BGK equation and the Discrete Velocity Method (DVM) requires a large number of velocity grid points leading to significant computational costs. We propose an adaptive velocity grid approach exploiting the fact that locally in space, the distribution function is supported only by a sub-set of the global velocity grid. The velocity grid is adapted thanks to criteria based on local temperature, velocity and on the enforcement of mass conservation. Simulations in 1D and 2D are presented for different Knudsen numbers and compared to a global velocity grid BGK solution, showing the computational gain of the proposed approach.

A local velocity grid approach for BGK equation

PUPPO, GABRIELLA ANNA
2014-01-01

Abstract

The solution of complex rarefied flows with the BGK equation and the Discrete Velocity Method (DVM) requires a large number of velocity grid points leading to significant computational costs. We propose an adaptive velocity grid approach exploiting the fact that locally in space, the distribution function is supported only by a sub-set of the global velocity grid. The velocity grid is adapted thanks to criteria based on local temperature, velocity and on the enforcement of mass conservation. Simulations in 1D and 2D are presented for different Knudsen numbers and compared to a global velocity grid BGK solution, showing the computational gain of the proposed approach.
2014
BGK model; Discrete velocity method; Kinetic models
Bernard, F.; Iollo, A.; Puppo, GABRIELLA ANNA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1968920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact