BACKGROUND: Metastatic triple-negative breast cancer is mostly incurable, due to lack of suitable drug targets. The insulin-like growth factor (IGF) system could provide such a target, and IGF-1 receptor (IGF-1R)-directed agents are already available, but seem unable to control all the complexities of the system, including crosstalk with hypoxia-inducible pathways. METHODS: Migration of triple-negative MDA-231 breast cancer cells and its modulation by IGFs, the IGF-1R inhibitor NVP-AEW541 and the IGF-2-sequestering monoclonal antibody MAB292 were assessed by the scratch wound healing and Boyden chamber assays; the effect of topotecan (inhibiting hypoxia-inducible factor-1 (HIF-1)) under hypoxia was also evaluated. Constitutive as well as drug-modulated levels of components of the IGF and HIF-1 pathways were evaluated by western blotting and qPCR. RESULTS: IGF-induced migration of MDA-231 cells was not abrogated by the IGF-1R inhibitor NVP-AEW541, whereas IGF-2 sequestration by MAB292 significantly reduced cell migration. Under hypoxia, topotecan was also effective, likely by reducing HIF-1-induced IGF-2 release. Simultaneous targeting of IGF-1R and IGF-2 or HIF-1 completely abolished cell migration. CONCLUSIONS: IR activation may account for the failure of NVP-AEW541 to suppress MDA-231 cell migration. Ligand-targeting compounds, or co-inhibition of the IGF and HIF-1 systems, may prevent activation of compensatory signalling, thereby providing a valuable addition to IGF-1R inhibitor-based therapies.

Co-targeting the IGF system and HIF-1 inhibits migration and invasion by (triple-negative) breast cancer cells

GARIBOLDI, MARZIA BRUNA;MONTI, ELENA CATERINA
2014-01-01

Abstract

BACKGROUND: Metastatic triple-negative breast cancer is mostly incurable, due to lack of suitable drug targets. The insulin-like growth factor (IGF) system could provide such a target, and IGF-1 receptor (IGF-1R)-directed agents are already available, but seem unable to control all the complexities of the system, including crosstalk with hypoxia-inducible pathways. METHODS: Migration of triple-negative MDA-231 breast cancer cells and its modulation by IGFs, the IGF-1R inhibitor NVP-AEW541 and the IGF-2-sequestering monoclonal antibody MAB292 were assessed by the scratch wound healing and Boyden chamber assays; the effect of topotecan (inhibiting hypoxia-inducible factor-1 (HIF-1)) under hypoxia was also evaluated. Constitutive as well as drug-modulated levels of components of the IGF and HIF-1 pathways were evaluated by western blotting and qPCR. RESULTS: IGF-induced migration of MDA-231 cells was not abrogated by the IGF-1R inhibitor NVP-AEW541, whereas IGF-2 sequestration by MAB292 significantly reduced cell migration. Under hypoxia, topotecan was also effective, likely by reducing HIF-1-induced IGF-2 release. Simultaneous targeting of IGF-1R and IGF-2 or HIF-1 completely abolished cell migration. CONCLUSIONS: IR activation may account for the failure of NVP-AEW541 to suppress MDA-231 cell migration. Ligand-targeting compounds, or co-inhibition of the IGF and HIF-1 systems, may prevent activation of compensatory signalling, thereby providing a valuable addition to IGF-1R inhibitor-based therapies.
2014
Hypoxia; IGFs; Migration; Triple-negative breast cancer
Mancini, M.; Gariboldi, MARZIA BRUNA; Taiana, E.; Bonzi, M. C.; Craparotta, I.; Pagin, M.; Monti, ELENA CATERINA
File in questo prodotto:
File Dimensione Formato  
BJC 2014.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1985920
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 29
social impact