We report the observation of efficient steering of a 855 MeV electron beam at MAMI (MAinzer MIkrotron) facilities by means of planar channeling and volume reflection in a bent silicon crystal. A 30.5 mu m thick plate of (211) oriented Si was bent to cause quasimosaic deformation of the (111) crystallographic planes, which were used for coherent interaction with the electron beam. The experimental results are analogous to those recorded some years ago at energy higher than 100 GeV, which is the only comparable study to date. Monte Carlo simulations demonstrated that rechanneling plays a considerable role in a particle's dynamics and hinders the spoiling of channeled particles. These results allow a better understanding of the dynamics of electrons subject to coherent interactions in a bent silicon crystal in the sub-GeV energy range, which is relevant for realization of innovative x-ray sources based on channeling in periodically bent crystals.

Steering of a Sub-GeV electron beam through planar channeling enhanced by rechanneling

PREST, MICHELA;
2014-01-01

Abstract

We report the observation of efficient steering of a 855 MeV electron beam at MAMI (MAinzer MIkrotron) facilities by means of planar channeling and volume reflection in a bent silicon crystal. A 30.5 mu m thick plate of (211) oriented Si was bent to cause quasimosaic deformation of the (111) crystallographic planes, which were used for coherent interaction with the electron beam. The experimental results are analogous to those recorded some years ago at energy higher than 100 GeV, which is the only comparable study to date. Monte Carlo simulations demonstrated that rechanneling plays a considerable role in a particle's dynamics and hinders the spoiling of channeled particles. These results allow a better understanding of the dynamics of electrons subject to coherent interactions in a bent silicon crystal in the sub-GeV energy range, which is relevant for realization of innovative x-ray sources based on channeling in periodically bent crystals.
2014
Negative particles; Bent crystals; Volume reflection; Deflection; Extraction; Collimation; A-particles; Coherent interaction; Crystallographic plane; Energy ranges; Planar channeling; Silicon crystal; X-ray sources
Mazzolari, A.; Bagli, E.; Bandiera, L.; Guidi, V.; Backe, H.; Lauth, W.; Tikhomirov, V.; Berra, A.; Lietti, D.; Prest, Michela; Vallazza, E.; De Salvador, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2018676
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 69
social impact