We consider the interaction of a qubit with a single mode of the quantized electromagnetic field and show that, in the ultrastrong coupling regime and when the qubit-field interaction is switched on abruptly, the dynamical Casimir effect leads to the generation of a variety of exotic states of the field, which cannot be simply described as squeezed states. Such effect is a consequence of the intrinsic nonlinearity of the qubit and also appears when initially both the qubit and the field are in their ground state. The non-classicality of the obtained exotic states is characterized by means of a parameter based on the volume of the negative part of the Wigner function. A transition to non-classical states is observed by changing either the interaction strength or the interaction time. The observed phenomena appear as a general feature of nonadiabatic quantum gates, so that the dynamical Casimir effect can be the origin of a fundamental upper limit to the maximum speed of quantum computation and communication protocols
Exotic states in the dynamical Casimir effect
BENENTI, GIULIANO;
2014-01-01
Abstract
We consider the interaction of a qubit with a single mode of the quantized electromagnetic field and show that, in the ultrastrong coupling regime and when the qubit-field interaction is switched on abruptly, the dynamical Casimir effect leads to the generation of a variety of exotic states of the field, which cannot be simply described as squeezed states. Such effect is a consequence of the intrinsic nonlinearity of the qubit and also appears when initially both the qubit and the field are in their ground state. The non-classicality of the obtained exotic states is characterized by means of a parameter based on the volume of the negative part of the Wigner function. A transition to non-classical states is observed by changing either the interaction strength or the interaction time. The observed phenomena appear as a general feature of nonadiabatic quantum gates, so that the dynamical Casimir effect can be the origin of a fundamental upper limit to the maximum speed of quantum computation and communication protocolsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.