Myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These disorders may undergo phenotypic shifts, and may specifically evolve into secondary myelofibrosis (MF) or acute myeloid leukemia (AML). We studied genomic changes associated with these transformations in 29 patients who had serial samples collected in different phases of disease. Genomic DNA from granulocytes, i.e., the myeloproliferative genome, was processed and hybridized to genome-wide human SNP 6.0 arrays. Most patients in chronic phase had chromosomal regions with uniparental disomy (UPD) and/or copy number changes. Disease progression to secondary MF or AML was associated with the acquisition of additional chromosomal aberrations in granulocytes (P = 0.002). A close relationship was observed between aberrations of chromosome 9p (UPD and/or gain) and progression from PV to post-PV MF (P = 0.002). The acquisition of one or more aberrations involving chromosome 5, 7, or 17p was specifically associated with progression to AML (OR 5.9, 95% CI 1.2-27.7, P = 0.006), and significantly affected overall survival (HR 18, 95% CI 1.9-164, P = 0.01). These observations indicate that disease progression from chronic-phase MPN to secondary MF or AML is associated with specific chromosomal aberrations that can be detected by means of high-resolution SNP array analysis of granulocyte DNA.

Identification of genomic aberrations associated with disease transformation by means of high-resolution SNP array analysis in patients with myeloproliferative neoplasm

PASSAMONTI, FRANCESCO;
2011-01-01

Abstract

Myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These disorders may undergo phenotypic shifts, and may specifically evolve into secondary myelofibrosis (MF) or acute myeloid leukemia (AML). We studied genomic changes associated with these transformations in 29 patients who had serial samples collected in different phases of disease. Genomic DNA from granulocytes, i.e., the myeloproliferative genome, was processed and hybridized to genome-wide human SNP 6.0 arrays. Most patients in chronic phase had chromosomal regions with uniparental disomy (UPD) and/or copy number changes. Disease progression to secondary MF or AML was associated with the acquisition of additional chromosomal aberrations in granulocytes (P = 0.002). A close relationship was observed between aberrations of chromosome 9p (UPD and/or gain) and progression from PV to post-PV MF (P = 0.002). The acquisition of one or more aberrations involving chromosome 5, 7, or 17p was specifically associated with progression to AML (OR 5.9, 95% CI 1.2-27.7, P = 0.006), and significantly affected overall survival (HR 18, 95% CI 1.9-164, P = 0.01). These observations indicate that disease progression from chronic-phase MPN to secondary MF or AML is associated with specific chromosomal aberrations that can be detected by means of high-resolution SNP array analysis of granulocyte DNA.
2011
Myeloproliferative neoplasm; genome; clonal evolution; acute myeloid leukemia
Rumi, E; Harutyunyan, A; Elena, C; Pietra, D; Klampfl, T; Bagienski, K; Berg, T; Casetti, I; Pascutto, C; Passamonti, Francesco; Kralovics, R; Cazzola...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2023254
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
social impact