Mergers of gas-rich galaxies are key events in the hierarchical built-up of cosmic structures, and can lead to the formation of massive black hole binaries. By means of high-resolution hydrodynamical simulations we consider the late stages of a gas-rich major merger, detailing the dynamics of two circumnuclear discs, and of the hosted massive black holes during their pairing phase. During the merger gas clumps with masses of a fraction of the black hole mass form because of fragmentation. Such high-density gas is very effective in forming stars, and the most massive clumps can substantially perturb the black hole orbits. After similar to 10 Myr from the start of the merger a gravitationally bound black hole binary forms at a separation of a few parsecs, and soon after, the separation falls below our resolution limit of 0.39 pc. At the time of binary formation the original discs are almost completely disrupted because of SNa feedback, while on pc scales the residual gas settles in a circumbinary disc with mass similar to 10(5) M-circle dot. We also test that binary dynamics is robust against the details of the SNa feedback employed in the simulations, while gas dynamics is not. We finally highlight the importance of the SNa time-scale on our results

Massive black hole and gas dynamics in mergers of galaxy nuclei – II. Black hole sinking in star-forming nuclear discs

Lupi, Alessandro;HAARDT, FRANCESCO;
2015-01-01

Abstract

Mergers of gas-rich galaxies are key events in the hierarchical built-up of cosmic structures, and can lead to the formation of massive black hole binaries. By means of high-resolution hydrodynamical simulations we consider the late stages of a gas-rich major merger, detailing the dynamics of two circumnuclear discs, and of the hosted massive black holes during their pairing phase. During the merger gas clumps with masses of a fraction of the black hole mass form because of fragmentation. Such high-density gas is very effective in forming stars, and the most massive clumps can substantially perturb the black hole orbits. After similar to 10 Myr from the start of the merger a gravitationally bound black hole binary forms at a separation of a few parsecs, and soon after, the separation falls below our resolution limit of 0.39 pc. At the time of binary formation the original discs are almost completely disrupted because of SNa feedback, while on pc scales the residual gas settles in a circumbinary disc with mass similar to 10(5) M-circle dot. We also test that binary dynamics is robust against the details of the SNa feedback employed in the simulations, while gas dynamics is not. We finally highlight the importance of the SNa time-scale on our results
2015
black hole physics; hydrodynamics; galaxies: evolution; galaxies: formation; galaxies: nuclei
Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo; Colpi, Monica
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2023721
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact