Let $S$ be a minimal complex surface of general type and of maximal Albanese dimension; by the Severi inequality one has $K^2_S\ge 4\chi(\mathcal O_S)$. We prove that the equality $K^2_S=4\chi(\mathcal O_S)$ holds if and only if $q(S):= h^1(\mathcal O_S)=2$ and the canonical model of $S$ is a double cover of the Albanese surface branched on an ample divisor with at most negligible singularities.

Surfaces on the Severi line

STOPPINO, LIDIA
2016

Abstract

Let $S$ be a minimal complex surface of general type and of maximal Albanese dimension; by the Severi inequality one has $K^2_S\ge 4\chi(\mathcal O_S)$. We prove that the equality $K^2_S=4\chi(\mathcal O_S)$ holds if and only if $q(S):= h^1(\mathcal O_S)=2$ and the canonical model of $S$ is a double cover of the Albanese surface branched on an ample divisor with at most negligible singularities.
Surfaces of general type Severi inequality Étale coverings Irregular varieties
Barja, M. T.; Pardini, R.; Stoppino, Lidia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2024523
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact