A simple second-order scheme on Cartesian grids for kinetic equations is presented, with emphasis on the accurate enforcement of wall boundary con- ditions on immersed bodies. This approach preserves at the discrete level the asymptotic limit towards Euler equations up to the wall, thus ensuring a smooth transition towards the hydrodynamic regime. We investigate exact, numerical and experimental test cases for the BGK model in order to assess the accuracy of the method.
Autori: | |
Data di pubblicazione: | 2015 |
Titolo: | Accurate Asymptotic Preserving Boundary Conditions for Kinetic Equations on Cartesian Grids |
Rivista: | JOURNAL OF SCIENTIFIC COMPUTING |
Digital Object Identifier (DOI): | 10.1007/s10915-015-9984-8 |
Codice identificativo ISI: | WOS:000362911900014 |
Codice identificativo Scopus: | 2-s2.0-84944168911 |
Parole Chiave: | Asymptotic preserving schemes; BGK model; Boltzmann equation; Cartesian grid; Software; Computational Theory and Mathematics; Theoretical Computer Science; Engineering (all) |
URL: | http://www.kluweronline.com/issn/0885-7474 |
Appare nelle tipologie: | Articolo su Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.