Septicemia caused by Neisseria meningitidis is characterized by increasing levels of meningococcal lipopolysaccharide (Nm-LPS) and cytokine production in the blood. We have used an in vitro human whole-blood model of meningococcal septicemia to investigate the potential of CyP, a selective Toll-like receptor 4 (TLR4)-MD-2 antagonist derived from the cyanobacterium Oscillatoria planktothrix FP1, for reducing LPS-mediated cytokine production. CyP (> or = 1 microg/ml) inhibited the secretion of the proinflammatory cytokines tumor necrosis factor alpha, interleukin-1beta (IL-1beta), and IL-6 (by >90%) and chemokines IL-8 and monocyte chemoattractant protein 1 (by approximately 50%) induced by the treatment of blood with pure Nm-LPS, by isolated outer membranes, and after infection with live meningococci of different serogroups. In vitro studies with human dendritic cells and TLR4-transfected Jurkat cells demonstrated that CyP competitively inhibited Nm-LPS interactions with TLR4 and subsequent NF-kappaB activation. These data demonstrate that CyP is a potent antagonist of meningococcal LPS and could be considered a new adjunctive therapy for treating septicemia.

A cyanobacterial lipopolysaccharide antagonist inhibits cytokine production induced by Neisseria meningitidis in a human whole-blood model of septicemia

ROSSETTI, CARLO;
2008

Abstract

Septicemia caused by Neisseria meningitidis is characterized by increasing levels of meningococcal lipopolysaccharide (Nm-LPS) and cytokine production in the blood. We have used an in vitro human whole-blood model of meningococcal septicemia to investigate the potential of CyP, a selective Toll-like receptor 4 (TLR4)-MD-2 antagonist derived from the cyanobacterium Oscillatoria planktothrix FP1, for reducing LPS-mediated cytokine production. CyP (> or = 1 microg/ml) inhibited the secretion of the proinflammatory cytokines tumor necrosis factor alpha, interleukin-1beta (IL-1beta), and IL-6 (by >90%) and chemokines IL-8 and monocyte chemoattractant protein 1 (by approximately 50%) induced by the treatment of blood with pure Nm-LPS, by isolated outer membranes, and after infection with live meningococci of different serogroups. In vitro studies with human dendritic cells and TLR4-transfected Jurkat cells demonstrated that CyP competitively inhibited Nm-LPS interactions with TLR4 and subsequent NF-kappaB activation. These data demonstrate that CyP is a potent antagonist of meningococcal LPS and could be considered a new adjunctive therapy for treating septicemia.
Bacteremia; Cyanobacteria; Cytokines; Dendritic Cells; Humans; Jurkat Cells; Lipopolysaccharides; Neisseria meningitidis; Toll-Like Receptor 4; Transfection
Jemmett, Kim; Macagno, Annalisa; Molteni, Monica; Heckels, John E; Rossetti, Carlo; Christodoulides, Myron
File in questo prodotto:
File Dimensione Formato  
3156.full.pdf

accesso aperto

Descrizione: PDF editoriale
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 516.49 kB
Formato Adobe PDF
516.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/2027516
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact