The ROC curve is one of the most common statistical tools useful to assess classifier performance. The selection of the best classifier when ROC curves intersect is quite challenging. A novel approach for model comparisons when ROC curves show intersections is proposed. In particular, the relationship between ROC orderings and stochastic dominance is investigated in a theoretical framework and a general class of indicators is proposed which is coherent with dominance criteria also when ROC curves cross. Furthermore, a simulation study and a real application to credit risk data are proposed to illustrate the use of the new methodological approach.
Making classifier performance comparisons when ROC curves intersect
GIGLIARANO, CHIARA;
2014-01-01
Abstract
The ROC curve is one of the most common statistical tools useful to assess classifier performance. The selection of the best classifier when ROC curves intersect is quite challenging. A novel approach for model comparisons when ROC curves show intersections is proposed. In particular, the relationship between ROC orderings and stochastic dominance is investigated in a theoretical framework and a general class of indicators is proposed which is coherent with dominance criteria also when ROC curves cross. Furthermore, a simulation study and a real application to credit risk data are proposed to illustrate the use of the new methodological approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.