Classical collaborative filtering, and content-based filtering methods try to learn a static recommendation model given training data. These approaches are far from ideal in highly dynamic recommendation domains such as news recommendation and computational advertisement, where the set of items and users is very fluid. In this work, we investigate an adaptive clustering technique for content recommendation based on exploration-exploitation strategies in contextual multi-armed bandit settings. Our algorithm takes into account the collaborative effects that arise due to the interaction of the users with the items, by dynamically grouping users based on the items under consideration and, at the same time, grouping items based on the similarity of the clusterings induced over the users. The resulting algorithm thus takes advantage of preference patterns in the data in a way akin to collaborative filtering methods. We provide an empirical analysis on medium-size real-world datasets, showing scalability and increased prediction performance (as measured by click-through rate) over state-of-the-art methods for clustering bandits. We also provide a regret analysis within a standard linear stochastic noise setting.

Collaborative Filtering Bandits

LI, SHUAI;GENTILE, CLAUDIO
2016-01-01

Abstract

Classical collaborative filtering, and content-based filtering methods try to learn a static recommendation model given training data. These approaches are far from ideal in highly dynamic recommendation domains such as news recommendation and computational advertisement, where the set of items and users is very fluid. In this work, we investigate an adaptive clustering technique for content recommendation based on exploration-exploitation strategies in contextual multi-armed bandit settings. Our algorithm takes into account the collaborative effects that arise due to the interaction of the users with the items, by dynamically grouping users based on the items under consideration and, at the same time, grouping items based on the similarity of the clusterings induced over the users. The resulting algorithm thus takes advantage of preference patterns in the data in a way akin to collaborative filtering methods. We provide an empirical analysis on medium-size real-world datasets, showing scalability and increased prediction performance (as measured by click-through rate) over state-of-the-art methods for clustering bandits. We also provide a regret analysis within a standard linear stochastic noise setting.
2016
S. Li, C. Gentile, A. Karatzoglou
Proc. of the 39th ACM Conference on Research and Development in Information Retrieval (SIGIR 2016)
978-1-4503-4069-4
39th ACM Conference on Research and Development in Information Retrieval (SIGIR 2016)
Pisa (Italy)
July 2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2045039
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 256
  • ???jsp.display-item.citation.isi??? ND
social impact