Over recent years, the continuous interest in wireless sensor networks (WSNs) has led to the appearance of new modeling methods and simulation environments for WSN applications. A broad variety of different simulation tools have been designed to explore and validate WSN systems before actual implementation and real-world deployment. These tools address different design aspects and offer various simulation abstractions to represent and model real-world behavior. In this article, we present a comprehensive comparative study of mainstream open-source simulation tools for WSNs. Two benchmark applications are designed to evaluate the frameworks with respect to the simulation runtime performance, network throughput, communication medium modeling, packet reception rate, network latency, and power consumption estimation accuracy. Such metrics are also evaluated against measurements on physical prototypes. Our experiments show that the tools produce equivalent results from a functional point of view and capacity to model communication phenomena, while the ability to model details of the execution platform significantly impacts the runtime simulation performance and the power estimation accuracy. The benchmark applications are also made available in the public domain for further studies.
A Comparative Study of Recent Wireless Sensor Network Simulators
RIZZARDI, ALESSANDRA;SICARI, SABRINA SOPHY
2016-01-01
Abstract
Over recent years, the continuous interest in wireless sensor networks (WSNs) has led to the appearance of new modeling methods and simulation environments for WSN applications. A broad variety of different simulation tools have been designed to explore and validate WSN systems before actual implementation and real-world deployment. These tools address different design aspects and offer various simulation abstractions to represent and model real-world behavior. In this article, we present a comprehensive comparative study of mainstream open-source simulation tools for WSNs. Two benchmark applications are designed to evaluate the frameworks with respect to the simulation runtime performance, network throughput, communication medium modeling, packet reception rate, network latency, and power consumption estimation accuracy. Such metrics are also evaluated against measurements on physical prototypes. Our experiments show that the tools produce equivalent results from a functional point of view and capacity to model communication phenomena, while the ability to model details of the execution platform significantly impacts the runtime simulation performance and the power estimation accuracy. The benchmark applications are also made available in the public domain for further studies.| File | Dimensione | Formato | |
|---|---|---|---|
|
2016_WSN.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



