Over recent years, the continuous interest in wireless sensor networks (WSNs) has led to the appearance of new modeling methods and simulation environments for WSN applications. A broad variety of different simulation tools have been designed to explore and validate WSN systems before actual implementation and real-world deployment. These tools address different design aspects and offer various simulation abstractions to represent and model real-world behavior. In this article, we present a comprehensive comparative study of mainstream open-source simulation tools for WSNs. Two benchmark applications are designed to evaluate the frameworks with respect to the simulation runtime performance, network throughput, communication medium modeling, packet reception rate, network latency, and power consumption estimation accuracy. Such metrics are also evaluated against measurements on physical prototypes. Our experiments show that the tools produce equivalent results from a functional point of view and capacity to model communication phenomena, while the ability to model details of the execution platform significantly impacts the runtime simulation performance and the power estimation accuracy. The benchmark applications are also made available in the public domain for further studies.

A Comparative Study of Recent Wireless Sensor Network Simulators

RIZZARDI, ALESSANDRA;SICARI, SABRINA SOPHY
2016-01-01

Abstract

Over recent years, the continuous interest in wireless sensor networks (WSNs) has led to the appearance of new modeling methods and simulation environments for WSN applications. A broad variety of different simulation tools have been designed to explore and validate WSN systems before actual implementation and real-world deployment. These tools address different design aspects and offer various simulation abstractions to represent and model real-world behavior. In this article, we present a comprehensive comparative study of mainstream open-source simulation tools for WSNs. Two benchmark applications are designed to evaluate the frameworks with respect to the simulation runtime performance, network throughput, communication medium modeling, packet reception rate, network latency, and power consumption estimation accuracy. Such metrics are also evaluated against measurements on physical prototypes. Our experiments show that the tools produce equivalent results from a functional point of view and capacity to model communication phenomena, while the ability to model details of the execution platform significantly impacts the runtime simulation performance and the power estimation accuracy. The benchmark applications are also made available in the public domain for further studies.
2016
Modeling; Performance; Power consumption estimation; System architectures; WSN simulation tools and environments
Minakov, Ivan; Passerone, Roberto; Rizzardi, Alessandra; Sicari, Sabrina Sophy
File in questo prodotto:
File Dimensione Formato  
2016_WSN.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2049584
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 29
social impact