In this work we propose a novel method for text spotting from scene images based on augmented Multi-resolution Maximally Stable Extremal Regions and Convolutional Neural Networks. The goal of this work is augmenting text character proposals to maximize their coverage rate over text elements in scene images, to obtain satisfying text detection rates without the need of using very deep architectures nor large amount of training data. Using simple and fast geometric transformations on multi-resolution proposals our system achieves good results for several challenging datasets while also being computationally efficient to train and test on a desktop computer.

Augmented text character proposals and convolutional neural networks for text spotting from scene images

ZAMBERLETTI, ALESSANDRO;GALLO, IGNAZIO;NOCE, LUCIA
2015-01-01

Abstract

In this work we propose a novel method for text spotting from scene images based on augmented Multi-resolution Maximally Stable Extremal Regions and Convolutional Neural Networks. The goal of this work is augmenting text character proposals to maximize their coverage rate over text elements in scene images, to obtain satisfying text detection rates without the need of using very deep architectures nor large amount of training data. Using simple and fast geometric transformations on multi-resolution proposals our system achieves good results for several challenging datasets while also being computationally efficient to train and test on a desktop computer.
2015
Proceedings - 3rd IAPR Asian Conference on Pattern Recognition, ACPR 2015
9781479961009
9781479961009
3rd IAPR Asian Conference on Pattern Recognition, ACPR 2015
mys
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2050305
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact