Given a complete Riemannian manifold M and a smooth positive function w on M, let L = - Δ - ∇(log w) acting on L2(M, w dV). Generalizing techniques used in the case of the Laplacian, we obtain upper and lower bounds for the first non-zero eigenvalue of L, for M compact, and for the bottom of the spectrum, for M non-compact.

Eigenvalue estimates for the weighted laplacian on a Riemannian manifold

SETTI, ALBERTO GIULIO
1998-01-01

Abstract

Given a complete Riemannian manifold M and a smooth positive function w on M, let L = - Δ - ∇(log w) acting on L2(M, w dV). Generalizing techniques used in the case of the Laplacian, we obtain upper and lower bounds for the first non-zero eigenvalue of L, for M compact, and for the bottom of the spectrum, for M non-compact.
Mathematics (all); Algebra and Number Theory; Analysis; Geometry and Topology; Mathematical Physics
Setti, ALBERTO GIULIO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2051396
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact