The mechanism for vibrational inelastic excitation during the collision between Li2(ν = 0) and Li was investigated exploiting classical trajectory simulations over a potential energy surface generated by fitting valence full configuration interaction calculations employing a large basis set. From the trajectory results, it emerges that the vibrational excitation in noncapture collisions presents uniquely a forward-scattered projectile for the highest levels of excitation (ΔE(0 → ν′) ≃ Ecoll). For lower ν′, a minor contribution presenting a backward-scattered projectile appears, which, however, has its major contribution coming from a "slingshot"-like (orbiting) mechanism exploiting the attractive features of the Li3 potential energy surface rather than a direct recoil.
Vibrationally Inelastic Collision Between Li2(ν = 0) and Li: Direct and Postponed Elongation Mechanisms
CORONGIU, GIORGINA;MELLA, MASSIMO
2015-01-01
Abstract
The mechanism for vibrational inelastic excitation during the collision between Li2(ν = 0) and Li was investigated exploiting classical trajectory simulations over a potential energy surface generated by fitting valence full configuration interaction calculations employing a large basis set. From the trajectory results, it emerges that the vibrational excitation in noncapture collisions presents uniquely a forward-scattered projectile for the highest levels of excitation (ΔE(0 → ν′) ≃ Ecoll). For lower ν′, a minor contribution presenting a backward-scattered projectile appears, which, however, has its major contribution coming from a "slingshot"-like (orbiting) mechanism exploiting the attractive features of the Li3 potential energy surface rather than a direct recoil.File | Dimensione | Formato | |
---|---|---|---|
li3_Eexchange_dynamics.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
DRM non definito
Dimensione
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.