The three Ni-based metal-organic frameworks (MOFs) Ni(BDP), Ni(BPEB), and Ni3(BTP)2 [H2BDP = 1,4-(4-bispyrazolyl)benzene; H2BPEB = 1,4-bis(1H-pyrazol-4-ylethynyl)benzene; H3BTP = 1,3,5-tris(1H-pyrazol-4-yl)benzene], possessing square planar, potentially accessible metal sites, were preliminarily tested as catalysts in the base-free selective oxidation of hydroxymethylfurfural to 2,5-diformylfuran (DFF). While Ni(BDP) undergoes degradation, Ni3(BTP)2 is the most active of the three MOFs, yielding 27% DFF after 24 h with a selectivity close to 100% under relatively mild reaction conditions (120 °C, 30 bar O2, water as solvent). Upon flowing a model probe, in situ DRIFT and FT-IR spectroscopy were employed to rationalize the different performances of Ni(BPEB) and Ni3(BTP)2 in terms of adsorbate-adsorbent interactions: Not only hydrogen bonds are at work between the hydroxyl functionality of the probe and the pore walls of the MOF, but also and more importantly, bands ascribed to Ni-OR stretching are detected, denouncing the insurgence of Ni-probe interactions. The different intensity of these bands in the two cases confirms the different accessibility of the metal centers, as suggested by crystal structure analysis and catalytic tests.

Adsorbent-adsorbate interactions in the oxidation of HMF catalyzed by Ni-based MOFs: A DRIFT and FT-IR insight

LUCARELLI, CARLO;GALLI, SIMONA;MASPERO, ANGELO;CIMINO, ALESSANDRO;
2016-01-01

Abstract

The three Ni-based metal-organic frameworks (MOFs) Ni(BDP), Ni(BPEB), and Ni3(BTP)2 [H2BDP = 1,4-(4-bispyrazolyl)benzene; H2BPEB = 1,4-bis(1H-pyrazol-4-ylethynyl)benzene; H3BTP = 1,3,5-tris(1H-pyrazol-4-yl)benzene], possessing square planar, potentially accessible metal sites, were preliminarily tested as catalysts in the base-free selective oxidation of hydroxymethylfurfural to 2,5-diformylfuran (DFF). While Ni(BDP) undergoes degradation, Ni3(BTP)2 is the most active of the three MOFs, yielding 27% DFF after 24 h with a selectivity close to 100% under relatively mild reaction conditions (120 °C, 30 bar O2, water as solvent). Upon flowing a model probe, in situ DRIFT and FT-IR spectroscopy were employed to rationalize the different performances of Ni(BPEB) and Ni3(BTP)2 in terms of adsorbate-adsorbent interactions: Not only hydrogen bonds are at work between the hydroxyl functionality of the probe and the pore walls of the MOF, but also and more importantly, bands ascribed to Ni-OR stretching are detected, denouncing the insurgence of Ni-probe interactions. The different intensity of these bands in the two cases confirms the different accessibility of the metal centers, as suggested by crystal structure analysis and catalytic tests.
http://pubs.acs.org/journal/jpccck
METAL-ORGANIC FRAMEWORKS; 2,5-FURANDICARBOXYLIC ACID; SELECTIVE OXIDATION; 2,5-DIFORMYLFURAN
Lucarelli, Carlo; Galli, Simona; Maspero, Angelo; Cimino, Alessandro; Bandinelli, Claudia; Lolli, Alice; Velasquez Ochoa, Juliana; Vaccari, Angelo; Cavani, Fabrizio; Albonetti, Stefania
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2052653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact