We investigate the dependence of Poincaré recurrence-time statistics on the choice of recurrence set by sampling the dynamics of two- and four-dimensional Hamiltonian maps. We derive a method that allows us to visualize the direct relation between the shape of a recurrence set and the values of its return probability distribution in arbitrary phase-space dimensions. Such a procedure, which is shown to be quite effective in the detection of tiny regions of regular motion, allows us to explain why similar recurrence sets have very different distributions and how to modify them in order to enhance their return probabilities. Applied to data, this enables us to understand the coexistence of extremely long, transient powerlike decays whose anomalous exponent depends on the chosen recurrence set.

Anomalous dynamics and the choice of Poincaré recurrence set

ARTUSO, ROBERTO;
2016-01-01

Abstract

We investigate the dependence of Poincaré recurrence-time statistics on the choice of recurrence set by sampling the dynamics of two- and four-dimensional Hamiltonian maps. We derive a method that allows us to visualize the direct relation between the shape of a recurrence set and the values of its return probability distribution in arbitrary phase-space dimensions. Such a procedure, which is shown to be quite effective in the detection of tiny regions of regular motion, allows us to explain why similar recurrence sets have very different distributions and how to modify them in order to enhance their return probabilities. Applied to data, this enables us to understand the coexistence of extremely long, transient powerlike decays whose anomalous exponent depends on the chosen recurrence set.
2016
http://harvest.aps.org/bagit/articles/10.1103/PhysRevE.94.052222/apsxml
Statistical and Nonlinear Physics; Statistics and Probability; Condensed Matter Physics
Sala, Matteo; Artuso, Roberto; Manchein, Cesar
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2059588
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact