OBJECTIVES: To establish reference values for fatty acids (FA) especially for n-3 and n-6 long-chain polyunsaturated FAs (LC PUFA) in whole-blood samples from apparently healthy 3-8-year-old European children. The whole-blood FA composition was analysed and the age-and sex-specific distribution of FA was determined. DESIGN AND SUBJECTS: Blood samples for FA analysis were taken from 2661 children of the IDEFICS (identification and prevention of dietary-and lifestyle-induced health effects in children and infants) study cohort. Children with obesity (n = 454) and other diseases that are known to alter the FA composition (n = 450) were excluded leaving 1653 participants in the reference population. MEASUREMENTS: The FA composition of whole blood was analysed from blood drops by a rapid, validated gas chromatographic method. RESULTS: Pearson correlation coefficients showed an age-dependent increase of C18:2n-6 and a decrease of C18:1n-9 in a subsample of normal weight boys and girls. Other significant correlations with age were weak and only seen either in boys or in girls, whereas most of the FA did not show any age dependence. For age-dependent n-3 and n-6 PUFA as well as for other FA that are correlated with age (16:0, C18:0 and C18:1n-9) percentiles analysed with the general additive model for location scale and shape are presented. A higher median in boys than in girls was observed for C20:3n-6, C20:4n-6 and C22:4n-6. CONCLUSIONS: Given the reported associations between FA status and health-related outcome, the provision of FA reference ranges may be useful for the interpretation of the FA status of children in epidemiological and clinical studies.
Reference values of whole-blood fatty acids by age and sex from European children aged 3-8 years
IACOVIELLO, LICIA;
2014-01-01
Abstract
OBJECTIVES: To establish reference values for fatty acids (FA) especially for n-3 and n-6 long-chain polyunsaturated FAs (LC PUFA) in whole-blood samples from apparently healthy 3-8-year-old European children. The whole-blood FA composition was analysed and the age-and sex-specific distribution of FA was determined. DESIGN AND SUBJECTS: Blood samples for FA analysis were taken from 2661 children of the IDEFICS (identification and prevention of dietary-and lifestyle-induced health effects in children and infants) study cohort. Children with obesity (n = 454) and other diseases that are known to alter the FA composition (n = 450) were excluded leaving 1653 participants in the reference population. MEASUREMENTS: The FA composition of whole blood was analysed from blood drops by a rapid, validated gas chromatographic method. RESULTS: Pearson correlation coefficients showed an age-dependent increase of C18:2n-6 and a decrease of C18:1n-9 in a subsample of normal weight boys and girls. Other significant correlations with age were weak and only seen either in boys or in girls, whereas most of the FA did not show any age dependence. For age-dependent n-3 and n-6 PUFA as well as for other FA that are correlated with age (16:0, C18:0 and C18:1n-9) percentiles analysed with the general additive model for location scale and shape are presented. A higher median in boys than in girls was observed for C20:3n-6, C20:4n-6 and C22:4n-6. CONCLUSIONS: Given the reported associations between FA status and health-related outcome, the provision of FA reference ranges may be useful for the interpretation of the FA status of children in epidemiological and clinical studies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.