Background and aims: Several epidemiological studies highlighted the association between folate and B-vitamins low intake and cardiovascular diseases (CVD) risk. Contrasting results were reported on the relationship between folate intake and DNA-methylation. Folate and B-vitamins may modulate DNA-methylation of specific enzymes which are included in the One-Carbon Metabolism (OCM) and in the homocysteine (Hcy) pathways. The aim of the study was to evaluate whether DNA-methylation profiles of OCM and Hcy genes could modulate the myocardial infarction (MI) risk conferred by a low B-vitamins intake. Methods and results: Study sample (206 MI cases and 206 matched controls) is a case-control study nested in the prospective EPIC cohort. Methylation levels of 33 candidate genes where extracted by the whole epigenome analysis (Illumina-HumanMethylation450K-BeadChip). We identified three differentially methylated regions in males (TCN2 promoter, CBS 5'UTR, AMT gene-body) and two in females (PON1 gene-body, CBS 5'UTR), each of them characterized by an increased methylation in cases. Functional in silico analysis suggested a decreased expression in cases. A Recursively Partitioned Mixture Model cluster algorithm identified distinct methylation profiles associated to different MI risk: high-risk vs. low-risk methylation profile groups, OR = 3.49, p = 1.87 x 10(-4) and OR = 3.94, p = 0.0317 in males and females respectively (multivariate logistic regression adjusted for classical CVD risk factors). Moreover, a general inverse relationship between B-vitamins intake and DNA-methylation of the candidate genes was observed. Conclusions: Our findings support the hypothesis that DNA-methylation patterns in specific regions of OCM and Hcy pathways genes may modulate the CVD risk conferred by folate and B-vitamins low intake. (C) 2013 Elsevier B.V. All rights reserved.

B-vitamins intake, DNA-methylation of One Carbon Metabolism and homocysteine pathway genes and myocardial infarction risk: The EPICOR study

IACOVIELLO, LICIA;
2014-01-01

Abstract

Background and aims: Several epidemiological studies highlighted the association between folate and B-vitamins low intake and cardiovascular diseases (CVD) risk. Contrasting results were reported on the relationship between folate intake and DNA-methylation. Folate and B-vitamins may modulate DNA-methylation of specific enzymes which are included in the One-Carbon Metabolism (OCM) and in the homocysteine (Hcy) pathways. The aim of the study was to evaluate whether DNA-methylation profiles of OCM and Hcy genes could modulate the myocardial infarction (MI) risk conferred by a low B-vitamins intake. Methods and results: Study sample (206 MI cases and 206 matched controls) is a case-control study nested in the prospective EPIC cohort. Methylation levels of 33 candidate genes where extracted by the whole epigenome analysis (Illumina-HumanMethylation450K-BeadChip). We identified three differentially methylated regions in males (TCN2 promoter, CBS 5'UTR, AMT gene-body) and two in females (PON1 gene-body, CBS 5'UTR), each of them characterized by an increased methylation in cases. Functional in silico analysis suggested a decreased expression in cases. A Recursively Partitioned Mixture Model cluster algorithm identified distinct methylation profiles associated to different MI risk: high-risk vs. low-risk methylation profile groups, OR = 3.49, p = 1.87 x 10(-4) and OR = 3.94, p = 0.0317 in males and females respectively (multivariate logistic regression adjusted for classical CVD risk factors). Moreover, a general inverse relationship between B-vitamins intake and DNA-methylation of the candidate genes was observed. Conclusions: Our findings support the hypothesis that DNA-methylation patterns in specific regions of OCM and Hcy pathways genes may modulate the CVD risk conferred by folate and B-vitamins low intake. (C) 2013 Elsevier B.V. All rights reserved.
2014
Fiorito, G; Guarrera, S; Valle, C; Ricceri, F; Russo, A; Grioni, S; Mattiello, A; Di Gaetano, C; Rosa, F; Modica, F; Iacoviello, Licia; Frasca, G; Tum...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2060789
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 46
social impact