Proteins and glycoproteins with therapeutic activity are susceptible to environmental factors, which can cause their degradation and the loss of their activity. Thus, the maintenance of their stability during the production process is a critical factor. In this work, a simple and rapid hydrophilic interaction liquid chromatography HILIC-UV method was validated in terms of accuracy, precision, linearity, LOD, LOQ and specificity and applied to the investigation of the stability of intact proteins and their neo-glycoconjugates with antigenic activity against tuberculosis. The method proved to be suitable for the estimation of the degradation of the proteins under critical conditions (i.e. freeze-thaw cycles) and for the monitoring of their coupling reaction with saccharidic moieties, without the need of sample preparation. In addition, the chromatographic analysis allowed to calculate the yields of the protein glycosylation reaction.

Application of a rapid HILIC-UV method for synthesis optimization and stability studies of immunogenic neo-glycoconjugates

PIUBELLI, LUCIANO;POLLEGIONI, LOREDANO;
2017-01-01

Abstract

Proteins and glycoproteins with therapeutic activity are susceptible to environmental factors, which can cause their degradation and the loss of their activity. Thus, the maintenance of their stability during the production process is a critical factor. In this work, a simple and rapid hydrophilic interaction liquid chromatography HILIC-UV method was validated in terms of accuracy, precision, linearity, LOD, LOQ and specificity and applied to the investigation of the stability of intact proteins and their neo-glycoconjugates with antigenic activity against tuberculosis. The method proved to be suitable for the estimation of the degradation of the proteins under critical conditions (i.e. freeze-thaw cycles) and for the monitoring of their coupling reaction with saccharidic moieties, without the need of sample preparation. In addition, the chromatographic analysis allowed to calculate the yields of the protein glycosylation reaction.
2017
www.elsevier.com/locate/jpba
HILIC-UV; Intact protein analysis; Neo-glycoproteins; Protein stability; Analytical Chemistry; 3003; Drug Discovery3003 Pharmaceutical Science; Spectroscopy; Clinical Biochemistry
Rinaldi, F.; Tengattini, S.; Calleri, E.; Bavaro, T.; Piubelli, Luciano; Pollegioni, Loredano; Massolini, G.; Temporini, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2061567
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact