Our aim was to use quantitative and qualitative analyses to gain further insight into the role of ceramide in cystic fibrosis (CF). Sphingolipid ceramide is a known inflammatory mediator, and its accumulation in inflamed lung has been reported in different types of emphysema, chronic obstructive pulmonary disease and CF. CF is caused by a mutation of the chloride channel and associated with hyperinflammation of the respiratory airways and high susceptibility to ongoing infections. We have previously demonstrated that de novo ceramide synthesis is enhanced in lung inflammation and sustains Pseudomonas aeruginosa pulmonary infection in a CF murine model. We used liquid chromatography and matrix-assisted laser desorption/ionization (MALDI) imaging coupled with mass spectrometry, confocal laser scan microscopy and histology analyses to reveal otherwise undecipherable information. We demonstrated that (i) upregulated ceramide synthesis in the alveoli is strictly related to alveolar infection and inflammation, (ii) alveolar ceramide (C16) can be specifically targeted by nanocarrier delivery of the ceramide synthesis inhibitor myriocin (Myr) and (iii) Myr is able to downmodulate pro-inflammatory lyso-PC, favouring an increase in anti-inflammatory PCs. We concluded that Myr modulates alveolar lipids milieu, reducing hyperinflammation and favouring anti-microbial effective response in CF mouse model.
Myriocin treatment of CF lung infection and inflammation: complex analyses for enigmatic lipids
TRINCHERA, MARCO GIUSEPPE;
2017-01-01
Abstract
Our aim was to use quantitative and qualitative analyses to gain further insight into the role of ceramide in cystic fibrosis (CF). Sphingolipid ceramide is a known inflammatory mediator, and its accumulation in inflamed lung has been reported in different types of emphysema, chronic obstructive pulmonary disease and CF. CF is caused by a mutation of the chloride channel and associated with hyperinflammation of the respiratory airways and high susceptibility to ongoing infections. We have previously demonstrated that de novo ceramide synthesis is enhanced in lung inflammation and sustains Pseudomonas aeruginosa pulmonary infection in a CF murine model. We used liquid chromatography and matrix-assisted laser desorption/ionization (MALDI) imaging coupled with mass spectrometry, confocal laser scan microscopy and histology analyses to reveal otherwise undecipherable information. We demonstrated that (i) upregulated ceramide synthesis in the alveoli is strictly related to alveolar infection and inflammation, (ii) alveolar ceramide (C16) can be specifically targeted by nanocarrier delivery of the ceramide synthesis inhibitor myriocin (Myr) and (iii) Myr is able to downmodulate pro-inflammatory lyso-PC, favouring an increase in anti-inflammatory PCs. We concluded that Myr modulates alveolar lipids milieu, reducing hyperinflammation and favouring anti-microbial effective response in CF mouse model.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.