We give a new upper bound of the optimal retraction constant for innite dimensional cut invariant subspaces of B(K); in particular, we improve the previous estimate for the space ℓ1. Then we improve an old upper bound for the function of minimal displacement type, obtained by Goebel in 1973, in the case of an innite dimensional Hilbert space.
The minimal displacement and optimal retraction problems in some Banach spaces
Emanuele Casini;
2017-01-01
Abstract
We give a new upper bound of the optimal retraction constant for innite dimensional cut invariant subspaces of B(K); in particular, we improve the previous estimate for the space ℓ1. Then we improve an old upper bound for the function of minimal displacement type, obtained by Goebel in 1973, in the case of an innite dimensional Hilbert space.File | Dimensione | Formato | |
---|---|---|---|
THE MINIMAL DISPLACEMENT AND OPTIMAL RETRACTION.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
96.55 kB
Formato
Adobe PDF
|
96.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.