Online Social Networks (OSNs) remain the focal point of Internet usage. Since the beginning, networking sites tried best to have right privacy mechanisms in place for users, enabling them to share the right content with the right audience. With all these efforts, privacy customizations remain hard for users across the sites. Existing research that address this problem mainly focus on semi-supervised strategies that introduce extra complexity by requiring the user to manually specify initial privacy preferences for their friends. In this work, we suggest an adaptive solution that can dynamically generate privacy labels for users in OSNs. To this end, we introduce a deep reinforcement learning framework that targets two key problems in OSNs like Facebook: the exposure of users' interactions through the network to less trusted direct friends, and the possibility of propagating user updates through direct friends' interactions to indirect friends. By implementing this framework, we aim at understanding how social trust and privacy could be correlated, specifically in a dynamic fashion. We report the ranked dependence between the generated privacy labels and the estimated user trust values, which indicate the ability of the framework to identify the highly trusted users and share with them higher percentages of data.
Trust and privacy correlations in social networks: A deep learning framework
FERRARI, ELENA
2016-01-01
Abstract
Online Social Networks (OSNs) remain the focal point of Internet usage. Since the beginning, networking sites tried best to have right privacy mechanisms in place for users, enabling them to share the right content with the right audience. With all these efforts, privacy customizations remain hard for users across the sites. Existing research that address this problem mainly focus on semi-supervised strategies that introduce extra complexity by requiring the user to manually specify initial privacy preferences for their friends. In this work, we suggest an adaptive solution that can dynamically generate privacy labels for users in OSNs. To this end, we introduce a deep reinforcement learning framework that targets two key problems in OSNs like Facebook: the exposure of users' interactions through the network to less trusted direct friends, and the possibility of propagating user updates through direct friends' interactions to indirect friends. By implementing this framework, we aim at understanding how social trust and privacy could be correlated, specifically in a dynamic fashion. We report the ranked dependence between the generated privacy labels and the estimated user trust values, which indicate the ability of the framework to identify the highly trusted users and share with them higher percentages of data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.