We consider the solution of block-coupled large-scale linear systems of equations, arising from the finite element approximation of the linear elasticity problem. Due to the large scale of the problems we use properly preconditioned iterative methods, where the preconditioners utilize the underlying block matrix structures, involving inner block solvers and, when suited, broadly established tools such as the algebraic Multigrid method (AMG).For the considered problem, despite of its optimal rate of convergence, AMG, as implemented in some publicly available scientific libraries, imposes unacceptably high demands for computer resources. In this paper we propose and analyze an efficient multilevel preconditioner, based on the Generalized Locally Toeplitz framework, with a specialized transfer operator. We prove and numerically illustrate the optimal convergence rate of the proposed preconditioner, and experimentally report memory and CPU time savings. We also provide comparisons with respect to another aggregation-based algebraic multigrid algorithm.

Function-based block multigrid strategy for a two-dimensional linear elasticity-type problem

DONATELLI, MARCO;Mazza, Mariarosa;SERRA CAPIZZANO, STEFANO
2017-01-01

Abstract

We consider the solution of block-coupled large-scale linear systems of equations, arising from the finite element approximation of the linear elasticity problem. Due to the large scale of the problems we use properly preconditioned iterative methods, where the preconditioners utilize the underlying block matrix structures, involving inner block solvers and, when suited, broadly established tools such as the algebraic Multigrid method (AMG).For the considered problem, despite of its optimal rate of convergence, AMG, as implemented in some publicly available scientific libraries, imposes unacceptably high demands for computer resources. In this paper we propose and analyze an efficient multilevel preconditioner, based on the Generalized Locally Toeplitz framework, with a specialized transfer operator. We prove and numerically illustrate the optimal convergence rate of the proposed preconditioner, and experimentally report memory and CPU time savings. We also provide comparisons with respect to another aggregation-based algebraic multigrid algorithm.
2017
2017
Coupled PDEs; Finite elements; Linear elasticity; Multigrid methods; Multilevel Toeplitz matrices; Modeling and Simulation; Computational Theory and Mathematics; Computational Mathematics
Donatelli, Marco; Dorostkar, Ali; Mazza, Mariarosa; Neytcheva, Maya; SERRA CAPIZZANO, Stefano
File in questo prodotto:
File Dimensione Formato  
donatelli 2017 cma.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2064287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact