The NMDAR is thought to play a key role in the refinement of connectivity in developing neural circuits. Pharmacological blockade or genetic loss-of-function manipulations that prevent NMDAR function during development result in the disorganization of topographic axonal projections. However, because NMDARs contribute to overall glutamatergic neurotransmission, such loss-of-function experiments fail to adequately distinguish between the roles played by NMDARs and neural activity in general. The gliotransmitter D-serine is a coagonist of the NMDAR that is required for NMDAR channel opening, but which cannot mediate neurotransmission on its own. Here we demonstrate that acute administration of D-serine has no immediate effect on glutamate release or AMPA-mediated neurotransmission. We show that endogenous D-serine is normally present below saturating levels in the developing visual system of the Xenopus tadpole. Using an amperometric enzymatic biosensor, we demonstrate that glutamatergic activation elevates ambient endogenous D-serine levels in the optic tectum. Chronically elevating levels of D-serine promoted synaptic maturation and resulted in the hyperstabilization of developing axon branches in the tadpole visual system. Conversely, treatment with an enzyme that degrades endogenous D-serine resulted in impaired synaptic maturation. Despite the reduction in axon arbor complexity seen in D-serine-treated animals, tectal neuron visual receptive fields were expanded, suggesting a failure to prune divergent retinal inputs. Together, these findings positively implicate NMDAR-mediated neurotransmission in developmental synapse maturation and the stabilization of axonal inputs and reveal a potential role for D-serine as an endogenous modulator of circuit refinement.

The gliotransmitter D-serine promotes synapse maturation and axonal stabilization in Vivo

POLLEGIONI, LOREDANO;
2017-01-01

Abstract

The NMDAR is thought to play a key role in the refinement of connectivity in developing neural circuits. Pharmacological blockade or genetic loss-of-function manipulations that prevent NMDAR function during development result in the disorganization of topographic axonal projections. However, because NMDARs contribute to overall glutamatergic neurotransmission, such loss-of-function experiments fail to adequately distinguish between the roles played by NMDARs and neural activity in general. The gliotransmitter D-serine is a coagonist of the NMDAR that is required for NMDAR channel opening, but which cannot mediate neurotransmission on its own. Here we demonstrate that acute administration of D-serine has no immediate effect on glutamate release or AMPA-mediated neurotransmission. We show that endogenous D-serine is normally present below saturating levels in the developing visual system of the Xenopus tadpole. Using an amperometric enzymatic biosensor, we demonstrate that glutamatergic activation elevates ambient endogenous D-serine levels in the optic tectum. Chronically elevating levels of D-serine promoted synaptic maturation and resulted in the hyperstabilization of developing axon branches in the tadpole visual system. Conversely, treatment with an enzyme that degrades endogenous D-serine resulted in impaired synaptic maturation. Despite the reduction in axon arbor complexity seen in D-serine-treated animals, tectal neuron visual receptive fields were expanded, suggesting a failure to prune divergent retinal inputs. Together, these findings positively implicate NMDAR-mediated neurotransmission in developmental synapse maturation and the stabilization of axonal inputs and reveal a potential role for D-serine as an endogenous modulator of circuit refinement.
2017
http://www.jneurosci.org/content/jneuro/37/26/6277.full.pdf
D-serine; Gliotransmission; Plasticity; Retinotectal; Visual system; Xenopus laevis; Neuroscience (all)
Van Horn, Marion R.; Strasser, Arielle; Miraucourt, Lois S.; Pollegioni, Loredano; Ruthazer, Edward S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2064484
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact