We propose a robust and eicient ield-aligned volumetric meshing algorithm that produces hex-dominant meshes, i.e. meshes that are predominantly composed of hexahedral elements while containing a small number of irregular polyhedra. The latter are placed according to the singularities of two optimized guiding ields, which allow our method to generate meshes with an exceptionally high amount of isotropy. The ield design phase of our method relies on a compact quaternionic representation of volumetric octa-ields and a corresponding optimization that explicitly models the discrete matchings between neighboring elements. This optimization naturally supports alignment constraints and scales to very large datasets. We also propose a novel extraction technique that uses ield-guided mesh simplification to convert the optimized ields into a hexdominant output mesh. Each simplification operation maintains topological validity as an invariant, ensuring manifold output. These steps easily generalize to other dimensions or representations, and we show how they can be an asset in existing 2D surface meshing techniques. Our method can automatically and robustly convert any tetrahedral mesh into an isotropic hex-dominant mesh and (with minor modifications) can also convert any triangle mesh into a corresponding isotropic quad-dominant mesh, preserving its genus, number of holes, and manifoldness. We demonstrate the beneits of our algorithm on a large collection of shapes provided in the supplemental material along with all generated results.

Robust hex-dominant mesh generation using field-guided polyhedral agglomeration

Tarini, Marco
;
2017-01-01

Abstract

We propose a robust and eicient ield-aligned volumetric meshing algorithm that produces hex-dominant meshes, i.e. meshes that are predominantly composed of hexahedral elements while containing a small number of irregular polyhedra. The latter are placed according to the singularities of two optimized guiding ields, which allow our method to generate meshes with an exceptionally high amount of isotropy. The ield design phase of our method relies on a compact quaternionic representation of volumetric octa-ields and a corresponding optimization that explicitly models the discrete matchings between neighboring elements. This optimization naturally supports alignment constraints and scales to very large datasets. We also propose a novel extraction technique that uses ield-guided mesh simplification to convert the optimized ields into a hexdominant output mesh. Each simplification operation maintains topological validity as an invariant, ensuring manifold output. These steps easily generalize to other dimensions or representations, and we show how they can be an asset in existing 2D surface meshing techniques. Our method can automatically and robustly convert any tetrahedral mesh into an isotropic hex-dominant mesh and (with minor modifications) can also convert any triangle mesh into a corresponding isotropic quad-dominant mesh, preserving its genus, number of holes, and manifoldness. We demonstrate the beneits of our algorithm on a large collection of shapes provided in the supplemental material along with all generated results.
2017
http://www.acm.org/tog/
3D frame ield; Hexahedral dominant; Quaternionic representation; Singularity graph; Computer Graphics and Computer-Aided Design
Gao, Xifeng; Jakob, Wenzel; Tarini, Marco; Panozzo, Daniele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2066587
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 43
social impact