We give a general geometrical procedure to construct nilpotent morphisms Phi : F -> F(d), with F a vector bundle on P-1, obtaining an analog of the Jordan canonical form. We investigate the possible splitting types of F in dependence on the degeneration behavior of Phi. Applications to nilpotent matrices with an arbitrary number of variables are also given.

Homogeneous nilpotent matrices in two variables

Re, Riccardo
2008-01-01

Abstract

We give a general geometrical procedure to construct nilpotent morphisms Phi : F -> F(d), with F a vector bundle on P-1, obtaining an analog of the Jordan canonical form. We investigate the possible splitting types of F in dependence on the degeneration behavior of Phi. Applications to nilpotent matrices with an arbitrary number of variables are also given.
2008
Canonical forms; Matrices of polynomials; Vector bundles; Algebra and Number Theory
Causa, Antonio; Re, Riccardo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2067708
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact