We study the principal parts bundles PkOℙn(d) as homogeneous bundles and we describe their associated quiver representations. With this technique we show that if n ≥ 2 and 0 ≤ d < k then there exists an invariant decomposition PkOℙn(d) = Qk,d ⊕ (SdV ⊗ Oℙn) with Qk,d a stable homogeneous vector bundle. The decomposition properties of such bundles were previously known only for n = 1 or k ≤ d or d < 0. Moreover we show that the Taylor truncation maps H0PkOℙn(d)→H0PhOℙn(d), defined for any h ≤ k and any d, have maximal rank.
Autori: | |
Data di pubblicazione: | 2012 |
Titolo: | Principal parts bundles on projective spaces and quiver representations |
Rivista: | RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO |
Digital Object Identifier (DOI): | 10.1007/s12215-012-0084-4 |
Codice identificativo Scopus: | 2-s2.0-84874456151 |
Parole Chiave: | Principal parts; Projective space; Quiver representation; Stable; Vector bundle; Mathematics (all) |
Appare nelle tipologie: | Articolo su Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.