A sharp lower bound for the rank of the natural multiplication map H-0(F)xH(0)(G) --> H-0(FxG) is given, F and G being vector bundles generically generated by their global sections on an integral projective variety. Some Clifford-type inequalities in the context of the Brill-Noether theory of vector bundles on a curve are proved and their sharpness is studied.
Autori: | |
Data di pubblicazione: | 1998 |
Titolo: | Multiplication of sections and Clifford bounds for stable vector bundles on curves |
Rivista: | COMMUNICATIONS IN ALGEBRA |
Digital Object Identifier (DOI): | 10.1080/00927879808826250 |
Codice identificativo ISI: | WOS:000073639500019 |
Codice identificativo Scopus: | 2-s2.0-22044446213 |
Parole Chiave: | Algebra and Number Theory |
URL: | www.tandf.co.uk/journals/titles/00927872.asp |
Appare nelle tipologie: | Articolo su Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.