We show that a real binary form f of degree n has n distinct real roots if and only if for any (alpha, beta) is an element of R(2)\{0} all the forms alpha f(x) + beta f(y) have n - 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has a distinct real roots.

On the maximum rank of a real binary form

Re, R.
2011-01-01

Abstract

We show that a real binary form f of degree n has n distinct real roots if and only if for any (alpha, beta) is an element of R(2)\{0} all the forms alpha f(x) + beta f(y) have n - 1 distinct real roots. This answers to a question of Comon and Ottaviani (On the typical rank of real binary forms, available at arXiv:math/0909.4865, 2009), and allows to complete their argument to show that f has symmetric rank n if and only if it has a distinct real roots.
2011
Real roots; Typical rank; Waring rank; Applied Mathematics
Causa, A.; Re, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2067713
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact