The inverse method is a saturation based theorem proving technique; it relies on a forward proof-search strategy and can be applied to cut-free calculi enjoying the subformula property. This method has been successfully applied to a variety of logics. Here we apply this method to derive the unprovability of a goal formula G in Intuitionistic Propositional Logic. To this aim we design a forward calculus FRJ(G) for Intuitionistic unprovability. From a derivation of G in FRJ(G) we can extract a Kripke countermodel for G. Since in forward methods sequents are not duplicated, the generated countermodels do not contain redundant worlds and are in general very concise.
A forward unprovability calculus for intuitionistic propositional logic
Fiorentini, Camillo
;Ferrari, Mauro
2017-01-01
Abstract
The inverse method is a saturation based theorem proving technique; it relies on a forward proof-search strategy and can be applied to cut-free calculi enjoying the subformula property. This method has been successfully applied to a variety of logics. Here we apply this method to derive the unprovability of a goal formula G in Intuitionistic Propositional Logic. To this aim we design a forward calculus FRJ(G) for Intuitionistic unprovability. From a derivation of G in FRJ(G) we can extract a Kripke countermodel for G. Since in forward methods sequents are not duplicated, the generated countermodels do not contain redundant worlds and are in general very concise.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.