Bolometers are low temperature particle detectors with high energy resolution and detection efficiency. Some types of bolometric detectors are also able to perform an efficient particle identification. A wide variety of radiopure dielectric and diamagnetic materials makes the bolometric technique favorable for applications in astroparticle physics. In particular, thanks to their superior performance, bolometers play an important role in the worldwide efforts on searches for neutrinoless double-beta decay. Such experiments strongly require an extremely low level of the backgrounds that can easily mimic the process searched for. Here, we overview recent progress in the development of low background techniques for bolometric double-beta decay searches.

Low background techniques in bolometers for double-beta decay search

Giuliani, Andrea
2017-01-01

Abstract

Bolometers are low temperature particle detectors with high energy resolution and detection efficiency. Some types of bolometric detectors are also able to perform an efficient particle identification. A wide variety of radiopure dielectric and diamagnetic materials makes the bolometric technique favorable for applications in astroparticle physics. In particular, thanks to their superior performance, bolometers play an important role in the worldwide efforts on searches for neutrinoless double-beta decay. Such experiments strongly require an extremely low level of the backgrounds that can easily mimic the process searched for. Here, we overview recent progress in the development of low background techniques for bolometric double-beta decay searches.
2017
http://www.worldscinet.com/ijmpa/ijmpa.shtml
bolometers; cryogenic detectors; Double-beta decay; enriched materials; low background; particle identification; radiopurity; scintillators; single crystals; Atomic and Molecular Physics, and Optics; Nuclear and High Energy Physics; Astronomy and Astrophysics
Poda, Denys; Giuliani, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2068474
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 47
social impact